

Further Development and Optimization of IM Ingredients at Holston Army Ammunition Plant

2010 Insensitive Munitions & Energetic Material Technology Symposium

Virgil Fung *, Jacob Morris, David Price, Neil Tucker, Alberto Carrillo, Ed LeClaire BAE SYSTEMS Ordnance Systems Inc.
Holston Army Ammunition Plant, TN, USA

Briefing Outline

- Background
- HSAAP Product Portfolio
- IM Melt-Pour Formulations Development
- Non Traditional Ingredients Development
- Concluding Remarks
- Acknowledgements

Holston Army Ammunition Plant (HSAAP)

- Historically Configured for High Volume Production
 - Built in 1942-43
 - Primary Product Composition B (RDX/TNT/Wax)
 - Achieved delivery rates up to 1 Million Lbs. Comp B per day
 - Facility managed by BAE SYSTEMS since 1999 (25 years Facilities Use Contract)
- Rationalized for Peacetime and Current Wartime Needs
 - State-of-the-Art Computer Process Control
 - Improved Materials Handling, Storage, & Product Distribution
 - Infrastructure Upgrades
 - Flexible Energetics Facility
 - Insensitive Munitions
 - Research and Development

Holston Army Ammunition Plant

Current Holston AAP Product Portfolio

- RDX (MIL-DTL-398D, all classes) and FEM Grades
- HMX (MIL-DTL-45444D, all classes) and FEM Grades
- Pressable Explosives
 - PBXN-5, N-7, N-10, N-11; LX-14, PAX-2A, PBXW-14, etc.
- Cast-cured Precursor Explosives
 - CXM-3, -7, -9; CXM-AF-5, -7, etc.
- Traditional Melt-cast Explosives
 - Composition B, Octol, Cyclotol, etc.
- Insensitive Melt-cast Explosives
 - IMX-101, IMX-104, PAX-48, OSX-12
- Plastic Explosives (Composition C-4)
- DNAN (TNT replacement)
- NTO (coarse and fine grades)
- TATB
- High Bulk Density NQ
- Superfine PETN
- DMDNB (Taggant for Composition C-4)

Research and Development of New Products

^{*} Process development only

IM Melt-Pour Explosive Formulations Development

- Traditional Melt-Cast Explosive Fills:
 - Good explosive performance
 - Poor IM performance
 - Low cost, high volume manufacture
 - Multiple LAP options
- IM Improved Melt-cast Explosive Fills:
 - Good explosive performance
 - Good to excellent IM performance
 - Combination new/traditional explosive ingredients
 - Low cost, high volume manufacture
 - Multiple LAP options

IM Melt-Pour Explosive Formulations From HSAAP

IMX-101	DNAN, NTO, and NQ formulation. Selected as common TNT replacement. Applications include 105mm, 120mm, & 155 mm munitions. Qualified by the U.S. ARMY as main fill explosive in the 155mm M795 Artillery Projectile.
IMX-104	Contains DNAN, NTO, and RDX in various grades. Selected by the U.S. ARMY as the common Comp B replacement in IM Mortar systems (60mm, 81mm, & 120mm) and various submunitions.
PAX-48	Contains DNAN, NTO, and HMX in various grades and provides excellent IM and energetic performance properties. Being evaluated in 60mm Mortar (Europe) and 120mm HE-T Tank Ammunitions (FMS).
OSX-12	An aluminized version of IMX-104 which offers excellent IM properties combined with high blast energetic output.
PAX-21	DNAN based melt-cast explosive which is currently qualified and fielded in the U.S. ARMY 60mm Mortar system.
PAX-41	DNAN based melt-cast explosive which is currently qualified and fielded in the U.S. ARMY SPIDER Area Denial System.

Non Traditional Melt-Pour Ingredients

Dinitroanisole (DNAN)

- Key IM Melt Phase Component featured in all IM Melt Pour Formulations as TNT replacement ingredient
- Synthesis and scale-up development reported at IMEMTS 2004
- Over 200,000 LB produced to date in full production scale (batch size: 3,300+ LB)

Nitrotriazolone (NTO)

- Insensitive Comp B replacement ingredient
- Synthesis and scale-up development reported at IMEMTS 2004
- Over 100,000 LB produced to date in full production scale (batch size: 3,500+ LB)

FEM NTO (<20µm mean size target)

Manufactured on production scale Fluid Energy Mill

High Bulk Density Nitroguanidine (HBD NQ)

- Recrystallization developed at HSAAP (GFM NQ from stockpile)
- Major IM Energetic Ingredients in IMX-101 formulation
- Over X LB produced to date in full production scale (batch size: 3,000+ LB)

Fluid Energy Milled (FEM) RDX (≈4µm mean size target)

Proven to provide improved IM properties over regular grade RDX

All Materials Produced on Full Production Scale & Readily Available at HSAAP

2,4-Dinitroanisole (DNAN)

- TNT Replacement in IM Melt-Cast Formulations
- Batch Nitration process
 - Direct nitration of 4-nitroanisole
 - Produces pure 2,4-dinitroanisole (2,4-DNAN)
- Properties
 - Melts at 90-95°C, depending upon final formulation
 - Processed essentially the same as for TNT (higher m.pt)
 - Allows existing Melt-cast equipment to be used in processing and LAP
 - Much less sensitive than TNT
 - Can be demilitarized as for TNT (recover / re-use hardware)
 - Formulations tailored to have TNT / Comp. B performance

Nitrotriazolone (NTO)

- RDX Replacement in IM Melt-Cast Formulations
 - Similar performance, much improved IM properties
 - Available in regular (coarse) and FEM (fine) grades
- Traditional Method
 - Direct nitration of Triazolone (TO) via
 - slow addition of TO to nitric acid at high temps, or
 - controlled heating of TO/nitric acid mixture
 - Both result in a delayed exotherm onset
- OSI Improved Method
 - Used Reaction Calorimeter to support optimization
 - Improved Yield
 - Eliminated exotherm delay
 - Water used as recrystallization solvent
 - Synthesis, washing, recrystallization & filtering performed in Agile Facility at HSAAP
 - Improvement on crystal quality (size and shape)

High Bulk Density Nitroguanidine (HBD NQ)

- Inexpensive, efficient, proprietary recrystallization process at HSAAP to produce ~300 micron material (standard product)
- Key ingredient in IM-compliant explosive formulations (IMX-101)
- Slightly less energy output than RDX and NTO but good IM properties
- Input from US Army stockpiles and foreign sources
 - In needle form with low bulk density
 - Unsuitable for use in formulation activity
 - Recrystallization process developed
 - Lab Scale
 - Optimized process scaled up at the Agile Manufacturing Facility

HBD NQ Recrystallization

- Key Considerations:
 - Processing Parameters
 - NQ Concentration
 - Reaction Temperature and Agitation Level
 - Choice of Crystal Habit Modifiers
 - Foaming
 - End Product
 - Particle Size and Shape
 - Bulk Density
 - Solution Viscosity and Ease of Filtration
 - End Use Suitability (in IMX-101 processability)
- Robust NQ Recrystallization Process successfully developed
 - Spheroid shape and consistent particle size
 - Over 100% increase in Bulk Density from input material
 - HBD NQ ideal for explosive formulation
 - Adequate Efflux Viscosity on IMX-101

NQ Input Material (needle shape, low BD)

NQ End Product (Spheroid shape, high BD)

Novel Ingredients Synthesis Development

- Dinitroglycoluril (DNGU)
 - DNGU is produced from a simple nitration of glycoluril (inexpensive)
 - Glycoluril produced from inexpensive materials (urea and glyoxal)
 - Alternate IM replacement for RDX
 - Lower cost then NTO
 - Between RDX and HMX
 - High Theoretical Maximum **Density**
 - Current lab scale product ~ 15µm
 - Can be recrystallized to desirable particle size / shape
 - Low water solubility
 - Thermally stable (exotherm decomposition at ~ 250℃)

1,4-Dinitro-tetrahydro-imidazo[4,5-d]imidazole-2,5-dione

 $C_4H_4N_6O_6$ Mol. Wt.: 232.11 C, 20.70; H, 1.74; N, 36.21; O, 41.36

Novel Ingredients Synthesis Development

- Triaminotrinitrobenzene (TATB) *
 - TATB sensitivity benefits well acknowledged
 - 3 different synthesis routes now practiced at HSAAP
 - Type 1: Traditional Benziger TATB
 - Lab Scale Process Developed, Pilot Scale Planned
 - Successful lab scale production of PBXN-7/W-14
 - Type 2: Small particle size (5 micron) TATB made from alkylated phenols
 - Full Production Scale Process Practiced at the HSAAP Agile Facility
 - Successful full scale production of PBXN-7
 - Type 3: Large particle size (30-50 micron) TATB made from alkylated phenols
 - Lab Scale Process Developed, Pilot/Production Scale Planned
 - Successful lab scale production of PBXN-7/W-14

Type 2 TATB Made At HSAAP

PBXW-14 made with Type 3 TATB

^{*} Detailed briefing on Holston TATB presented at the NDIA 54th Annual Fuze Conference, May 2010

Concluding Remarks

- A New Generation of IM melt-pour explosives now available
 - IMX-101/104 demonstrated excellent IM properties over TNT/Comp B
 - Utilize a wide range of insensitive melt-pour ingredients
- Synthesis and optimization of melt-pour ingredients successfully developed and transitioned utilizing explosive manufacturing infrastructure at Holston Army Ammunition Plant
- Ingredients readily available and manufactured at Holston
- Robust and cost effective large scale manufacturing process:
 - DNAN, NTO, HBD NQ, TATB Type 2, FEM RDX
- New plan for scale up manufacturing of other novel ingredients:
 - (DNGU, TATB Type 1 and 3, etc)
- Continuous R&D efforts on synthesis and manufacture of novel insensitive ingredients

Acknowledgement

RDECOM-ARDEC

- Mr. Anthony DiStasio
- Mr. Paul Vinh
- Mr. Crane Robinson
- Mr. Omar Abbassi
- Mr. Sanjeev Singh
- Dr. Reddy Damavarapu
- Mr. Philip Samuels

BAE Systems, HSAAP

- Ms. Kelly Guntrum
- Ms. Lisa Hale
- Mr. Jim Haynes
- Mrs. Roberta Tabor

